Chapter 7: Sound

A Sound: A Form of Energy

- **Definition**: Sound is a form of energy that causes the sensation of hearing.
- **Production**: Sound is produced by vibrating bodies.
- Medium Required: Needs a material medium (solid, liquid, gas) to propagate.
- Audible Range:
 - \circ 20 Hz 20,000 Hz
 - \circ < 20 Hz \rightarrow Infrasonic
 - \circ 20,000 Hz \rightarrow Ultrasonic

► Wave Nature of Sound

- **Type**: Mechanical/Elastic Waves.
- Formula:
 - \circ V = fλ (Speed = Frequency × Wavelength)
 - o f = 1/T (Frequency = 1 / Time Period)
- Types of Waves:
 - 1. **Longitudinal Waves**: Vibrations parallel to wave direction (e.g., sound in air, solids, liquids).
 - 2. **Transverse Waves**: Vibrations perpendicular to wave direction (e.g., sound in solids and liquid surfaces).

Reflection of Sound

- Follows the laws of reflection (angle of incidence = angle of reflection).
- Applications: Megaphone, Soundboards, Ear Trumpets.
- **Condition**: Reflecting surface size > wavelength of sound.

♥ Echo

- Sound heard after reflecting from a distant object.
- Conditions for hearing an echo:
 - 1. Minimum distance = 17 m

- 2. Reflector should be large
- 3. Sound must be loud enough
- Formula:

```
o Distance = (Speed \times Time)/2
```

• **Reverberation**: Prolonged sound due to multiple reflections (e.g., in tombs).

▲ Applications of Echo

- **Determining Speed of Sound**: Use time taken for echo to calculate.
- Used by Animals: Bats, dolphins use echoes (ultrasonic) for navigation and hunting.
- SONAR: Uses ultrasonic waves to detect underwater objects and measure sea depth.
- Medical Use:
 - Ultrasonography: Imaging organs.
 - o Echo cardiography: Imaging heart.

1 Types of Vibrations

- 1. Natural Vibrations: Occur without external force. Ideal case in vacuum.
- 2. **Damped Vibrations**: Amplitude decreases due to resistive forces.
- 3. **Forced Vibrations**: Caused by an external periodic force.
- 4. **Resonance**: When forced frequency = natural frequency \rightarrow max amplitude.

M Characteristics of Sound

- 1. Loudness
 - Depends on amplitude.
 - Related to energy/intensity:
 - L = K log₁₀ I (Weber-Fechner law)
 - Measured in decibels (dB)
 - o Affected by amplitude, distance, surface area, medium, and resonance.
- 2. Pitch (Shrillness)
 - o Depends on frequency.
 - High pitch = high frequency, shrill sound.
- 3. Quality (Timbre)
 - o Depends on waveform.
 - o Helps distinguish same pitch & loudness from different sources.

Music vs Noise

- **Music**: Pleasant, regular sound (10–30 dB).
- Noise: Unpleasant, irregular sound (>120 dB).
- **Noise Pollution**: Harmful sound; safe limit = below 80 dB.

Important Numericals

- Concepts used:
 - $o V = f\lambda$
 - o Distance = $(speed \times time)/2$
 - o Understand graphs to extract frequency & wavelength
 - o Apply echo concept to real-world problems (claps, guns, sonar)

